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ANALYTICAL MODELS FOR THE PREDICTION
OF CREEP DEFORMATIONS IN HOLLOW,
FINITE, RIGHT-CIRCULAR CYLINDERS

by

O. E. Widera 2nd R. W. Weeks

ABSTRACT

The analytical prediction of primary and secondary
creep deformations in hollow, finite, right-circular cylin-
ders loaded by axial tension or by compression, and sub-
jected to internal and external pressure, and to arbitrary
temperature gradients is discussed.

I. INTRODUCTION

An accurate prediction of fuel-element deformations depends in
large measure cn acquiring a basic knowledge of the creep properties of
fuel and cladding materials in a reacior environment. Since most existing
creep data are from out-of-pile experiments, the determination of the
fission-induced enhancement of creep rates in-pile is of special interest.
Although apparently significant only at relatively low temperatures, this
effect may prove to be important because the cooler peripheral areas of
the fuel elements carry the greatest load.

Experiments are presently under way on fuel-element materials
(for example, Refs. 1 and 2) both to determine the effect of neutron flux
on creep rates and to obtain basic creep data of a more general nature.

The creep specimens used in many of these studies are hollow, vight-
circular cylinders loaded by axial tension or compression. In order to
isolate the in-pile creep effect, the analytical predictions of creep defor-
mations based on out-of-pile data will be compared with the test results
for low-temperature, in-pile creep. ;

Analytical models, useful both for analysis of creep-test results
with hollow cylinders and, subsequently, for predicting fuel-element creep
behavior, are developed in this report. In practice, the models will be used
first to determine the correct form of the creep law during out-of-pile tests,
and then to predict creep behavior under reactor operating conditions.
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A. Background

Many studies concerning the development of analytical models for
creep deformations have been published. Bibliographies of the macro-
scopic investigations may be found in Oding® and in Finnie,* and, on the
microscopic level, Garofalo® and Dorn® bcth give good summaries. In
1959, Mendelson et al.” outlined a successive approximation method for
the treatment of creep in plane stress problems. Their general approach
has served as the basis for considerable subsequent work in the analysis
of creep deformations and will be employed in this investigation. Included
among other work relevant to present needs is that of Wilson and Davis,?
who extended the Mendelson technique of successive approximations to
include the generalized plane strain analysis of creep in a closed cylinder
resulting from internal pressure.

In a different approach, Smith’ analyzed primary creep in thick
tubes under a pressure loading by finite-difference methods. Yalch and
McConnelee!® also used a finite-difference technique to solve the differen-
tial equations for the creep of composite tubes under radial and axial pres-
sure loads with radial temperature variation. In this latter work, the
differential equations were solved numerically by a direct computer
approach.

Still another method of attack was given by Besseling,!! who pre-
sented 1 numerical scheme for axially symmetric creep problems by using
an extremum principle for the rate of deformation. More recently,
Greenbaum and Rubinstein!? developed a finite-element routine for the
analysis of creep in axisymmetric bodies under axisymmetric-loading
conditions.

Finally, Blackburn'? investigated creep of thin tubes, both singly
and in a concentric arrangement, under corditions of internal pressure
and cyclic thermal loading. Although the analysis is limited, due to neg-
lect of elastic effects, axial strain, and shear stresses, Blackburn does
attempt to apply his results to the deformation of reactor fuel clements.

Two approaches are employed in the present report to model the
creep deformations of hollow-cylindrical specimens under the given multi-
axial stress conditions. The problem is treated first by a generalized plane
strain approach and then, more generally, by a three-dimensional varia-
tional technique. Both methods will employ the technique of successive
approximations; however, the variational solution can account for end
effects and axial temperature gradients, whereas the plane strain approach
cannot. Each solution allows for complete flexibility in the choice of creep
law and loading path.






A two-shell model will also be developed to examine the effects of
different creep rates in adjoining concentric cylinders. With internal pres-
sure specified as a function of time, the two-shell model may serve as a
crude approximation to fuel-element behavior.

B. Creep Laws

Creep is the irreversible deformation with time of a body subjected
to a sustained lo. . For metals, this time-dependent plastic deformation
usually becomes important only at elevated temperatures, but, as noted, an
enhancement of creep rates may occur in-pile that is significant at low
temperatures.

Each material, in principle, undergoes a characteristic creep de-
formation (strain versus time, Fig. 1) for given mechanical and thermal
loading conditions. The terminology primary, second-

- FENT ary, and tertiary stages of creep correspond, respec-
- — e tively, to periods of decreasing, constant, and increasing
& y strain rate. The tertiary stage ends with creep rupture.
ELASTIE STAAM For purposes of modeling normal fuel-element behavior,
= the primary and secondary stages of creep are of most
Fig. 1 interest since the onset of tertiary creep, at least in
Typical Creep Curve for cladding materials, must be avoided.

Metals. The three stages
of creep in a uniaxial test

ertain aspects of the physical microprocesses
are shown, = e BES PEVRES DEEs

that comprise macroscopically observed creep can be
explained on the basis of atomic diffusion, dislocation motion, and in‘ergran-
ular flow. A quantitatively complete microstructural theory, howev ., is not
yet available. Creep "laws" (strain-stress-time-temperature relat_uns),
therefore, are usually empirical formulations designed tc fit the test data
of macroscopic creep. Since many types of creep laws have been proposed,
one should note that the analysis developed in this report is sufficiently
flexible to handle an arbitrary creep-law formulation.

Two common approaches to creep laws seem to be most favored.
The first, rheological modeling, consists of building linear models of ma-
terials by mathematically forming various series and rarallel combinations
of springs and dashpots. By employing more combinations, one has avail-
able more adjustable parameters with which to fit experimental data. Such
models are especially desirable from an analytical point of view because of
their linearity, and the theory of linear viscoelasticity is based on these
models (see, for example, Ref. 14). However, if nonlinearity must be in-
cluded, Coulomb friction elements may be added to the network, or the
springs and dashpots can be endowed with nonlinear properties.

A creep law wit' time dependence that results from a spring and
dashpot in parallel (Kelvin model), coupled with another spring and dashpot
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in series (Maxwell model), can be written as follows:
€€ = A,o"e-Q/RT(] 4+ Bt-Ce-Dt), (1)

where €€ is the creep strain, ¢ is the applied stress, t is the time, Q is
an average activation energy for creep mechanisms, R is the universal
gas constant, T is the absolute temperature, and A;, n, B, C, and D are
experimental constants. This equation reflects the belief that creep is an
Arhennius-type thermally activated process that involves nonlinear viscous
flow.

Although rheological modeling theoretically offers great flexibility,
quite often, as in the case of fuel-element materials, the available experi-
mental data are very incomplete and at times inconsistent. The possibility
of many adjustable parameters is of no advantage in such cases, arnd the
following traditional, and very simple, formulation is often adequate:

€€ = AgoPe~Q/RTym, (2)

where m is an experimentally determined constant, and the other symbols
have the same meaning as previously defined.

When the effect of the fission process on the creep rate is known,
Eqgs. 1 and 2 can be modifed in a suitable manner. Cornfield et al.! suggest
either a simple additive or multiplicative term proportional to the fission
rate. In a recent study of Zircaloy, Nichols? prefers an additive formulation.

When differentiated with respect to time, holding stress and tempera-
ture constant during each successive Eime step in a quasi-static approach,
Eq. 2 leads to a time-hardening law:

€€ = A(,mc!“e'Q/RTtrn'l
or

Ae® = Aymo e"Q/RTym-1 p¢. (3)

Solving Eq. 2 for time t and substituting into Eq. 3 yields a strain-
hardening law:

ze"s me:(m")/m[Aoo“e'Q/RT]l/m

A€€ = mc(m“)/m[Aoo"e'Q/RT]l/m At. (4)
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For many materials, this law seems to work reasonably well®#
during constant or increasing loading; however, since a reactor may be
run for intervals of time (for example, overnight) under a decreased load,
some annealing of the strain-hardening and the radiation damage will occur.
To account for this, Gittus'® has proposed that when the stress drops below
some given level, say at time ty. then the strain € in Eq. 4 should be re-
placed by an "effective strain" given by

' ~
e* = ee~t'/T, (5)
where T is an experimentally measured time constant and

t' = tye-Q/RT, (6)

This simple expedient embodies the idea that the annealing will be essen-
tially a relaxation phenomena with an Arhennius time dependence. For
definiteness, the creep law represented by Eqs. 4-6 will be assumed in
subsequent sections of this report.

II. MULTIAXIAL STRESS-STRAIN RELATIONS

Creep laws generally represent the equation of state for a uniaxial
state of stress. The constitutive equations for creep under multiaxial
stress conditions can be derived from the following conditions:

1. The constitutive equations for a uniaxial state of stress should
result when a multiaxial state of stress degenerates into a uniaxial state.
»
2. The equations should express volume constancy for the creep
deformation. This results from the plastic nature of creep.

3. A superimposed hydrostatic stress should not give rise to any
change in the creep rate. (This assumption has been the subject of some
controversy.'®)

4. The principal directions of the rates of strain and stress ten-
sors should coincide for an isotropic medium.

The flow or incremental theory of plasticity states that the incre-
ments of plastic strain are related to the final state of stress, the plastic
strain, and the stress increment. In general these relations are not in-
tegrable, and the integral depends on the loading path:

S p
€jj = f ey (7)
path
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and

B P P
Acij = AGij(Okl'ekl' bLaoyg), (8)
where Aeg are the infinitesimal plastic strain increments, e?- are the plas-

tic strain components, O] is the stress tensor, and the subscripts i, j, k,
1 =1, 2, 3. Equation 7 insures history dependence.

Assuming that the von Mises yield criterion holds, the associated
stress-strain relations can be written as

aef =3 Aoip Sijr ; (9)
where
Sij = Oy - céij, (10a)
=10 Sopryms (10b)
oe = (3/2 8ij5ij)'"%, _ (10¢)
and
A, =2/ nePpel ). (104)

Here, S;; are the deviatoric stress components, 0¢ is the equivalent stress,
Aep is the equivalent plastic-strain increment, and 5ij is the Kronecker
delta. Repeated indices imply the use df the summation convention. Equa-
tions 9 and 10 are generally known as the Prandtl-Reuss relations.

Although the physical processes involved in creep may be different
from ‘hose occurring in plastic flow, we will assume that the relations re-
lating stress to creep strain are given by the Prandtl-Reuss equations.
Condition 1 is then satisfied if the equivalent creep-strain increment is
related to the equivalent stress in the same way that one-dimensional creep
is related to the tension or compression test. The other conditions are sat-
isfied by the Prandtl-Reuss equations.

III. GENERALIZED PLANE STRAIN SOLUTIONS

A. Method of Analysis

With reference to a cylindricai coordinate system (r, 6, z), the dif-
ferential equation of equilibrium for axisymmetric problems in the state
of generalized plane strain is given by
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do O =0
r+L—9:0, (ll)
dr T

The strain-displacement relations are

du
Cp = im— 69:

= 12
P y €z constant, ( )

n|e

where u is the radial displacement.

The solution of creep problems can, in general, be obtained by using
an incremental approach. One starts with a given increment of time and
solves the problem by successive approximations. The next increment of
time is then chosen, and the solution proceeds in the same manner. Let
€4j be the components of the total creep strain at time t and Aef- the addi-
tional increment of creep strain during time interval At. For small strains,
we then have the following stress-strain relations:

= L_ ch c 1 +v X
Ur_ZG(€1'+1_2y €r Aer-l_ZVaT),

2 Vet s PO o LY )
Og ZG(€9+_—1 el Aee T vy ZvaT :
2 Bis. . S A TR R . )
oo ZG(e:z F it G5 < Bl - s aT ). (13)

where G is the shear modulus, V is the Poisson ratio, a is the coefficient

of linear expansion, and
»

€ = € + €Eg+ E,. (14)

On substituting Eqs. 12 and 13 into the equilibrium equations, we
obtain the following equation for the radial displacement: -

IRy nse e 1M du e e S =
()G 135 5) - deseoen

(e§+0¢ef) - (eS+A¢€S) ¥ i dT
4 r 7K ek T (15)

Integrating Eq. 15 twice with respect to r yields

d e el
u =T'+dzr +( T v)Tf (€S +Aeg) r, dr,
a

E Ti (e§+D€f) - (34 Aep) N e
= r, - dr,dr, +(l )—f Tr, dr,,
a 5 2 e (16)

n
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1e

where d, and d, are constants of integration. This expression for u, upon
integration by parts, can be rewritten as

o I=2u\ r ; (l+v)
. o +d,r + (——l-y)_4GlA(r)_B(r)]+ -7, %F 5 Tr, dr,, (17)
where
o
Alr) =_Zf (¢ AeS+eg+A€E) v, dr,
> .
a
and
2 1
B(r) ="2G f (€§+A€5-€§-A€§);;drp (18)
a

and

where

In terms of Eq. 18, the stresses can now be expressed as follows:

Lo d, 2G(1+v) a
Or = m[dz - (l -Z’U):z--i- vez] - —179(1‘)
1
-1 —5l1-2v) A + B}, (19)
L Hitle! d, 2G(1 +v) a
Og = T [dz + (1 -21/); a5 'UGZ] - ———1 =5 e(r)

+]-l_21/[(1 = 2¥) kv B < zc,[e:5+ Aeg_( v )(6§+A€§)]» (20)

l1-v

o v 1 (1-2v l+v)
s = ZG{I -2v[2dz'zc(1-v)B] '(1-v o

1-v v
* (—1 -;.y)ez - €3 - Aeg +(l _V)(e§+Aeg)}. (21)

1 [F
6(r) = — Tey dry. 22
5 /; 1 dry (22)
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After d,, d,, and €, have been determined with reference to a par-
ticular problem (see next two sections), the solution technique proceeds
as follows:

1. Assume A€§ = Aeg - Aeg = 0 at the start.

2. Calculate the elastic stress distribution.

3. Compute 0 from the stresses.

4. Compute A€ from the creep law.

5. Compute A€ from the strain increments.

6. Average A€. from steps 4 and 5.

7. Calculate Aeg, A€S, and Aeg from the Prandtl-Reuss relations.

8. Calculate the new stress distribution.

9. Repeat steps 3 through 8 until satisfactory convergence is
obtained.

10. At the start of the second time increment, the total creep strains
are set equal to the creep-strain increments determined at the
end of the first time increment. The procedure of the previous
steps is then repeated for this and any other succeeding time
interval.

B. Creep of a Finite, Hollow Cylinder

Consider the hollow cylinder in Fig. 2 with internal radius a, ex-
ternal radius b, and length L, subjected to a compressive axial load p
and to both internal and externai pressure.
The boundary, conditions can be expressed as

or = -p; (r=a)
i and
¥ :
f (oF WA b (23)
¢
T

The condition of equilibrium in the axial di-
rection yields the additional relation

y b
; o )
” -t-—"'x f Oepidr == Zp—“n+ 2(piaz - pob?). (24)

g » ¢
T
For definiteness, let us assume a

Fig. 2. Coordinate System for a radial temperature distribution that corre-
Hollow Cylinder under sponds to the case of uniform heat genera-
Compressive Load tion with no heat transfer at the inner surface,
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Then, as shown in the next section,

T(r)'= Zk[# + a%ln (r/b)] + Tp, (25)

where q is the rate of heat generation, k is the thermal conductivity, and
Ty is the temperature at r = b. Thus,

(r) =—liﬂ:?qﬁ(b_z' 2-n b) + Tb] /: r, dr,

r a2 [F ]
= :lq—kf r} dr, +%—k— ry lnr, drlj. (26)
a a
Application of boundary conditions of Eq. 23 now yields

a’b? ) 1
d, = (ﬁ Sgl(pi - Po) + D]

and

1-2v 1 - 20\ v
d; = -( 3G )Pi+( 3G )(bz " az)[Pi'Po)+D]‘V€z- (27)

where

b = ﬁ[(x -2v) A(b) + B(b)] +M 6(b). (28)

Finally, the axial equilibrium condition yields the following expression
for €5:

A s 1 2.2
€; = [ A 4G(pla -pob)+—(b -a%) p;

b
¥ 2 v c
o (Z_G) b [(pi- po) + D] - (—i—_ﬁ)‘/; (€r+A€§) r dr
v > 324
c C C C
+(—].-_V)f l‘f ;(€9+A€9w€r-A€r) dr,dr
a a
14+v 2 2
+( )abZG(b) +f (e ES ) rdy | E s
ha ¥ sl (1+v)

A (bZ - al)'

(29)
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This completes the formulation of the problem.

C. Creep of Two Concentric Closed Cylinders

Consider the problem of two concentric closed cylinders of finite
length under the action of an internal pressure p,, an external pressure p,,
and an axial force p. The particular application of interest is a nuclear
reactor fuel element with a hollow cylinder of fissionable material sur-
rounded by a cylinder of nonfissionable material (cladding). Let a be the
inside radius, b the interface radius, and c the outside radius of the com-
posite cylinder. If we assume a fricticnless interface, the boundary con-
ditions for this problem can be stated as follows:

Or, = =P1 (oi=ia)

and
o, = -, (r=c), (30)

where the subscripts 1 and 2 refer to the inner and outer cylinders, re-
spectively. In addition, we have the following continuity conditions:

Op, = O

rpp W T U (r = b). (31)

If we assume that the fuel cylinder is somewhat shorter than the
closed cladding tube, the values of €, can be determined from the following
axial equilibrium conditions:

E P1
f Ogyr dr = -T(bz-az); .
a
& 1
f Oger dr = %*F?(bez - p2c?).- (32)
b

In terms of Eq. 19, the boundary conditions in Eq. 21 become

2G, d),
2 e e dyy ~4(1 'ZVI)?+ Vi€z1 |+

- d (1-2 )dlz ]
- =z — - -2V, ) =—— 4 V,E
Pz 1-2v,|%% 2 Y 2 zzJ

2G,(1+v,) a, 1

o i Biitle g 21,Z[(l - 2v,) Ay(c) + B,(c)). (33)

15
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The continuity conditions (Eq. 31) yield the following relations:

2G,

dy; 2G,(1+v)) oy
1_—7_,,1[dz1 i et e g Vl“:zl] g W et

1-v

6,(b)

—1—(1 2v,) A,(b) + B,(b —-—Z-GL-d (1 Zv)&+ve
‘1_21,1[' 1 l)+l)]_l‘27"z 22 = 1= 2¥2) 2€2z2

and

d), 1-2v\ p 1+ d;,
< +d;b + (T’Ul -E;[Al(b) - B,(b)] + m- a,b6,(b) = 5 + d,,b. (34)

The equilibrium equations yield the additional two relations needed to de-
termine the values of d and €,:

. 130 | " i)
Tz_vl(b -a?)[2d,y v + (1-v)) €,4] + 2G, /; " 2G,(1 - ;) By

1+
-(—)alTl = egl - A€<z:l 4

Py (e +Ae§.)] r dr

Seilality

1 - "
P

- B (35)

and

V2

G, c
332
c®-b%)[2d,,v, + (1 -v,) € +2G ——
= Z'uz( )[2dzzv, + ( 2) €z2] : z-/; [ 2G,(1 - »,) B,

1+v, & = v, p 2
A @:T; - €z = A€z +\ T3 = (er, +A€r,) | r dr
= Ay +l(p b? - ) CZ) (36)
2T sk Ll
For the problem being considered, the inside pressure p, is assumed
to be due to a gas whose density is increasing at a constant rate because of

the accumulation of fission products. The perfect gas law

E
P

+—¥— (37)

z|z-
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then yields
Po . "
S it 38
PN (TN +NT) (38)
or
» Po, . .
e ?[T + w(T +tT)], (39)
0

where T and N are the temperature and density of the gas, respectively,
w is the relative rate of increase of density, and a dot above a quantity
represents differentiation with respect to time. If the temperature re-
mains constant,

P =—N. (40)

The pressure on the outer cylinder due to the coolant is assumed
constant.

The inner cylinder can be considered to be subjected to a tempera-
ture gradient that results from the heat generated by nuclear fission. As-
suming a uniform heat source q, the solution of the Fourier heat-conduction
equation

k,V’T = -q (41)
is given by
2

ek
= b 4k,

+clnr+c,, (42)

where k, is the thermal conductivity of the fuel. When Eq. 41 is used, we
assume that all loading (thermal as well as mechanical) takes place in a
quasi-static manner.

Application of the boundary conditions

%:0 {2 =a):
T=T, (r=b) (43)

to Eq. 42 yields

T +%[bz -r?42a% In (r/b)]. (44)
1
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The outer cylinder contains no heat source, and the temperature
distribution, subject to the boundary conditions

T =) (r =b)
and
Ti= T sz c)s (45)
is given by
L2 1h i
Tz = (C/b) ln;-i- Tb' (46)

The relation between q, and the interface temperature Ty, is ob-
tained by equating the fluxes per unit length at r = b, which yields

Tp = Te +=o-(b’-2a?) In (c/b), (47)

where k, is the thermal conductivity of the cladding.

The equations necessary for the plane strain analysis of the creep
deformation of two concentric cylinders are now complete. In order to
account for axial temperatire variations and general end conditions, a
more general three-dimensional approach was also developed.

IV. VARIATIONAL FORMULATION

A. Method of Analysis .

For small strains, the strain tensor can be expressed as a sum of
elastic, thermal, and creep strains:

E T e c
+E; et Aeij. (48)

< Sl
where the superscripts E, T; and c refer, respectively, to the elastic,
thermal, and creep parts of the strain. Upon removal of the load, the
elastic strains can be recovered; therefore, the total strain can be ex-
pressed as

E
)i + T (49)
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The term 7);; denotes the initial strain, which is given by
5

One of the most widely used variational principles of classical
elasticity theory is the theorem of Minimum Potential Energy:

"Of all displacements satisfying the given
boundary conditions, those which satisfu
the equilibriwn equations make the poteniial
energy an absolute minimum."

The potential energy may be deiined as

Vi) = f € d f fu; dv - f t;u; de, (51)
v v Sg

where

€ = strain-energy density,

V = volume,

Sg = part of the boundary where stresses are specified,

uj = displacement componeats,

f; = components of body force per unit volume,
and . s

tj = components of stress vector specified on the boundary.
In linear elasticity theory, the strain-energy density is expressed as
€ = 30jj€ij. (52)

The relations between the components of the strain tensor and the displace-
ment vector are

du; Odu;
2€;5 = ax; +a—x-il. (53)

The uj displacements rnust belong to a class of admissible tunctions, that
is, u; must satisfy the displacement boundary conditions and must have as
many continuous derivatives as required in the solution of the problem.
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The theorem of Minimum Potential Energy can be generalized to in-
clude creep problems if the strain-energy density is replaced by a modified
strain-energy density function € defined as follows:

€= ';'Oij(eij"')ij)' (54)
Since the stress tensor is related to the strain tensor by
E
ij = Eijki€k

= Eijk1(€g - nk1), (55)

we can express the modified strain-energy density function in matrix for a
as

€ = HTENe} - (TE)M) + § ()TIEYN), (56)
where [E] is the matrix of the elastic moduli and
{e)T - {e11. €22, €33, 26,5, 265, 26, ). (57)

The superscript T denotes the matrix transpose. The potential energy is
now given by

V = %fv {e}T[E]{e} dv - [ {e}T[E]{n} av

+3 [, OTE)M av - [ ()T av + [ ()T} s, (58)

»

One of the advantages of stating the problem in a variational form
is that a solution is possible with the aid of the Rayleigh-Ritz method,
without recourse to the differential equations. The idea of this method is
to extremize the functional on a finite-dimensional subspace of admissible
functions. For the approximate solution to converge to the true solution,
the subspace should contain a set of functions that are relatively comp)ete
in the space. The set of functions, which extends over the entire body, is
chosen to satisfy the geometric boundary conditions. The convergence can
be studied by increasing the dimension of the subspace of admissible
functions.

Following the idea of the Rayleigh-Ritz method, we choose the dis-
placements as a linear combination of functions:

! S SIS Gk T I I e

{u} = [#(x;)){a}. (59)
2x1 Axn

ORI e Y L
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The strains can be expressed in terms of the a matrix as

% {e} = [B(x;)){a} (60)
?; Substituting this expression into the energy functional yiclds

% v = @7k} + & [ TEMR v - @TR) - WITR) (61)
g en

s [x] = [, [BIT(E](B] av,

: @} = [ 11T (e} av + [ (81T} as,

E,: and

_l P} = [ [BIT(E]M} av. (62)

e

Note that the initial strain in Eq. 61 functions as an additional external
load and may be treated as such.

TS T
ahdes

The condition that the energy be an extremum:

: 8V =0, (63)
4

= is given by

Fx

Z dv :

P: s 0 G172 .. n): (64)

This condition yields the relations

T U
3 e il ihny

! [k} = (@} + (P, (65)
" from which the values of a; can be determined.
f The stresses are determined from the relation
= {0} = [E][B]a}. (66)
b The solution technique now proceeds as follows:

1. At the start of the first time interval, the total creep strain is
zero and the increments of creep strain are taken to be zero. The thermo-
: elastic stresses are then determined from Eqs. 65 and 66.
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2. Calculate the equivalent stress from Eq. 10c.

3. Calculate the equivalent creep strain increment from boih
Eqgs. 4 and 10c, and average.

4. Determine the incremental creep strains from Eq. 9.

5. Substitute these incremental creep strains into Eq. 65 and
determine the stresses from Eq. 66.

6. Repeat steps 2 through 5 until the difference between two suc-
cessive sets of strain increments is less than some prescribed value.

7. At the start of the second time interval the total creep strains
are set equal to the increments of creep strain of the first time interval.
The procedure of steps 1 through 6 is repeated for this and any other
succeeding time intervals.

B. Creep of a Compressed Hollow Cylinder

Consider a hollow cylinder of inside radius a, outside radius b,
and height 2c. The cylinder is subjected to a compressive axial force p
by two rigid platens, an internal pressure p;, and an external pressure p,
(Fig. 2). If friction is created between platens and cylinder, the boundary
conditions are

u=0, w=7Kc (z=zc) (67)
Tra i 0 (ce=tmrsh); .

or = -p; (r=a)

op = -pp (r =b), (68)

where K is a constant. The assumed trial functions for the displacements
need to satisfy only the boundary conditions of Eq. 67 and the symmetry
conditions

u=0 (r

n

0, for all z);

w =0 (z=0,for all r). (69)

The boundary conditions of Eq. 67 and the symmetry conditions of
Eq. 69 are satisfied if we assume the trial functions to have the form
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- < m-1 n-z
e 8 L z\»
wsv ) ) a3 [0 -6y
m=2,4,... N=2,4,.
and
00 00
r\m-2[y;\n-1 z\n+!
w = -Kz +c z z an(g) (—c-) - (?) ’ (70)
m=2,4,... N=2,4,...
where Amp, B v and K are constants to be determined by the Rayleigh-
v Ritz method, i.e., through Eq. 65. If the material is assumed to be homo-
geneous and isotropic, the matrices needed for Eq. 65 are given by
s v 0 0 0 ]
Y=w v 0 0 0
v v 1-v 0 0 0
2G
: 1 il w7 O NN —l-“zﬁ'- 0 o | (71)
o GV ey g, S ER C.p
1 -2v
_0 0 0 0 > ;
B m-2 n-2 n =
)@@ o 0
r m-lr z\n-2 z\n
¢ e ] % 3
8] = r\m-2 Z\N=2 \nf s
0 RN (;) [(n-l)(?) - (n+l)(?) ] (72)
0 oS 0
b\/r\M-![/,\n-3 Zz\n=1 c r\m-=3[/z\n-1 z\ D41
/ - @ETE e 0w o @)™ [ - @]
: re}: + Bef + a’;
Amn
S cg + Aeg +aT
a} = e {n} = | €S + A€ +aT|; (73)
0
/
Brmn iz + AyEs
0

23
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Q- . - (74)
2PC

— —

Note that this variational approach may be extended to include ani-
sotropic effects as well. Given an arbitrary, symmetrical temperature
distribution and the desired form of creep law, the analytical outline for
the variational approach is now complete.

V. CONCLUSIONS

Two methods have been presented for the analytical prediction of
creep deformations in finite, hollow, right-circular cylindrical bodies
under various conditions of axisymmetric mechanical and thermal loading.
A generalized plane-strain approach was developed and applied both to the
case of a single cylinder under radial and axial loading, and to the case of
two concentric cylinders undergoing creep deformations. A second, more
general variational formulation developed for the case of a single cylinder,
allowed for both axial and radial variations in loading and temperature.
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